36 research outputs found

    Description of a Database Containing Wrist PPG Signals Recorded during Physical Exercise with Both Accelerometer and Gyroscope Measures of Motion

    Get PDF
    Wearable heart rate sensors such as those found in smartwatches are commonly based upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of light reflected back. This method works well for stationary subjects, but in exercise situations, PPG signals are heavily corrupted by motion artifacts. The presence of these artifacts necessitates the creation of signal processing algorithms for removing the motion interference and allowing the true heart related information to be extracted from the PPG trace during exercise. Here, we describe a new publicly available database of PPG signals collected during exercise for the creation and validation of signal processing algorithms extracting heart rate and heart rate variability from PPG signals. PPG signals from the wrist are recorded together with chest electrocardiography (ECG) to allow a reference/comparison heart rate to be found, and the temporal alignment between the two signal sets is estimated from the signal timestamps. The new database differs from previously available public databases because it includes wrist PPG recorded during walking, running, easy bike riding and hard bike riding. It also provides estimates of the wrist movement recorded using a 3-axis low-noise accelerometer, a 3-axis wide-range accelerometer, and a 3-axis gyroscope. The inclusion of gyroscopic information allows, for the first time, separation of acceleration due to gravity and acceleration due to true motion of the sensor. The hypothesis is that the improved motion information provided could assist in the development of algorithms with better PPG motion artifact removal performance

    Estimation of heart rate from foot worn photoplethysmography sensors during fast bike exercise

    Get PDF
    This paper presents a new method for estimating the average heart rate from a foot/ankle worn photoplethysmography (PPG) sensor during fast bike activity. Placing the PPG sensor on the lower half of the body allows more energy to be collected from energy harvesting in order to give a power autonomous sensor node, but comes at the cost of introducing significant motion interference into the PPG trace. We present a normalised least mean square adaptive filter and short-time Fourier transform based algorithm for estimating heart rate in the presence of this motion contamination. Results from 8 subjects show the new algorithm has an average error of 9 beats-per-minute when compared to an ECG gold standard

    Eeg Connectivity - Informed Cooperative Adaptive Line Enhancer for Recognition of Brain State

    Get PDF
    Bursts of sleep spindles and paroxysmal fast brain activity waveforms have frequency overlap whilst generally, paroxysmal waveforms have shorter duration than spindles. Both resemble bursts of normal alpha activity during short rests while awake with closed eyes. In this paper, it is shown that for a proposed cooperative adaptive line enhancer, which can both detect and separate such periodic bursts, the combination weights are consistently different from each other. The outcome suggests that for accurate modelling of the brain neuro-generators, the brain connectivity has to be precisely estimated and plugged into the adaptation process

    An in-depth investigation of genetic programming and nine other machine learning algorithms in a financial forecasting problem

    Get PDF
    Machine learning (ML) techniques have shown to be useful in the field of financial forecasting. In particular, genetic programming has been a popular ML algorithm with proven success in improving financial forecasting. Meanwhile, the performance of such ML algorithms depends on a num- ber of factors including data analysis from different markets, data periods, forecasting days ahead, and the transaction cost which have been neglected in most previous studies. Therefore, the focus of this paper is on investigating the effect of such factors. We perform an extensive evaluation of a financial genetic programming-based approach and compare its performance against 9 popular machine learning algorithms and the buy and hold trading strategy. Experiments take place over daily data from 220 datasets from 10 international markets. Results show that genetic programming not only provides profitable results but also outperforms the 9 machine learning algorithms in terms of risk and Sharpe ratio

    A Deep Learning Architecture with Spatio-Temporal Focusing for Detecting Respiratory Anomalies

    Full text link
    This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Our system initially performs audio feature extraction using Continuous Wavelet transformation. This transformation converts the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed deep learning architecture inspired by the Inception-residual-based backbone performs the spatial-temporal focusing and multi-head attention mechanism to classify respiratory anomalies. In this work, we evaluate our proposed models on the benchmark SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) database proposed by the IEEE BioCAS 2023 challenge. As regards the Score computed by an average between the average score and harmonic score, our robust system has achieved Top-1 performance with Scores of 0.810, 0.667, 0.744, and 0.608 in Tasks 1-1, 1-2, 2-1, and 2-2, respectively.Comment: arXiv admin note: text overlap with arXiv:2303.0410

    Gyroscope vs. accelerometer measurements of motion from wrist PPG during physical exercise

    Get PDF
    Many wearable devices include PPG (photoplethysmography) sensors for non-invasive heart rate monitoring. However, PPG signals are heavily corrupted by motion interference, and rely on simultaneous motion measurements to remove the interference. Accelerometers are used commonly, but cannot differentiate between acceleration due to movement and acceleration due to gravity. This paper compares measurements of motion using accelerometers and gyroscopes to give a more complete estimate of wrist motion. Results show the two sensor signals are very different, with low correlations present. When used in a wrist PPG heart rate algorithm gyroscope motion estimates obtain better performance in half of the cases

    An Inception-Residual-Based Architecture with Multi-Objective Loss for Detecting Respiratory Anomalies

    Full text link
    This paper presents a deep learning system applied for detecting anomalies from respiratory sound recordings. Initially, our system begins with audio feature extraction using Gammatone and Continuous Wavelet transformation. This step aims to transform the respiratory sound input into a two-dimensional spectrogram where both spectral and temporal features are presented. Then, our proposed system integrates Inception-residual-based backbone models combined with multi-head attention and multi-objective loss to classify respiratory anomalies. Instead of applying a simple concatenation approach by combining results from various spectrograms, we propose a Linear combination, which has the ability to regulate equally the contribution of each individual spectrogram throughout the training process. To evaluate the performance, we conducted experiments over the benchmark dataset of SPRSound (The Open-Source SJTU Paediatric Respiratory Sound) proposed by the IEEE BioCAS 2022 challenge. As regards the Score computed by an average between the average score and harmonic score, our proposed system gained significant improvements of 9.7%, 15.8%, 17.8%, and 16.1% in Task 1-1, Task 1-2, Task 2-1, and Task 2-2, respectively, compared to the challenge baseline system. Notably, we achieved the Top-1 performance in Task 2-1 and Task 2-2 with the highest Score of 74.5% and 53.9%, respectively

    Cooperative particle filtering for tracking ERP subcomponents from multichannel EEG

    Get PDF
    In this study, we propose a novel method to investigate P300 variability over different trials. The method incorporates spatial correlation between EEG channels to form a cooperative coupled particle filtering method that tracks the P300 subcomponents, P3a and P3b, over trials. Using state space systems, the amplitude, latency, and width of each subcomponent are modeled as the main underlying parameters. With four electrodes, two coupled Rao-Blackwellised particle filter pairs are used to recursively estimate the system state over trials. A number of physiological constraints are also imposed to avoid generating invalid particles in the estimation process. Motivated by the bilateral symmetry of ERPs over the brain, the channels further share their estimates with their neighbors and combine the received information to obtain a more accurate and robust solution. The proposed algorithm is capable of estimating the P300 subcomponents in single trials and outperforms its non-cooperative counterpart
    corecore